hackquest logo

NinjaQuant API

NinjaQuant is a quant backtesting and analytics API on Injective Mainnet using real Market IDs to simulate perpetual futures strategies with comparison, regime detection, and risk metrics.

Videos

Project image 1

Tech Stack

Python

Description

🥷 NinjaQuant – Injective Strategy Backtesting API

Injective Python FastAPI Quant Framework

Demo : https://devtrad.onrender.com/docs

Repo : https://github.com/Suganthan96/Devtrad


🚀 Built on Injective Mainnet

NinjaQuant is a production-ready quantitative backtesting and analytics API built on Injective Mainnet perpetual futures markets.

It provides a structured intelligence layer on top of Injective’s derivatives infrastructure, enabling:

  • Strategy backtesting

  • Parameter comparison

  • Market regime detection

  • Risk analytics

  • Professional performance evaluation


🔗 Injective Mainnet Integration

✅ REAL Injective Market IDs (Mainnet Verified)

This API uses hardcoded, blockchain-verified Market IDs directly from Injective Mainnet.

📊 Supported Markets (Mainnet)

🔐 Verification Details

  • ✅ Mainnet Market IDs

  • ✅ Verified on Injective Explorer

  • ✅ Connected to Pyth Oracle feeds

  • ✅ Blockchain-validated market mapping

Server logs confirm usage:

Using Injective Market ID
Market ID: 0x9b9980167ecc3645ff1a5517886652d94a0825e54a77d2057cbbe3ebee015963
Oracle: Pyth

🎯 Problem

Injective provides rich on-chain derivatives data.

However, developers lack:

  • A structured backtesting engine

  • Risk-adjusted performance metrics

  • Market condition analytics

  • Strategy comparison tools

  • A quant abstraction layer

Most APIs expose raw data — not evaluated trading intelligence.


💡 Solution

NinjaQuant provides a modular FastAPI-based quant intelligence engine that:

  • Uses verified Injective Mainnet Market IDs

  • Fetches historical OHLCV data

  • Executes strategy simulations

  • Computes professional metrics

  • Classifies market conditions

  • Performs risk analysis

  • Compares multiple strategies in one request

It transforms Injective into a quant research-ready ecosystem.


📡 API Routes

🧪 Core Backtesting Endpoints

🔹 POST /backtest/ema-crossover

Backtest EMA crossover strategy on Injective Mainnet markets.

POST http://devtrad.onrender.com/backtest/ema-crossover

Content-Type: application/json

{

"market": "BTC/USDT PERP",

"timeframe": "1h",

"parameters": {

"short_period": 9,

"long_period": 21

},

"initial_capital": 10000

}

🔹 POST /backtest/rsi-mean-reversion

Backtest RSI mean reversion strategy.

POST https://devtrad.onrender.com/backtest/rsi-mean-reversion
Content-Type: application/json

{

"market": "ETH/USDT PERP",

"timeframe": "1h",

"strategy": "rsi_mean_reversion",

"parameters": {

"period": 14,

"oversold": 30,

"overbought": 70

},

"initial_capital": 10000

}


🚀 Advanced Quant APIs

🔬 POST /compare

Compare multiple strategy configurations in one request.

Example:

  • EMA(9,21) vs EMA(12,26)

  • RSI(14,30,70)

Automatically identifies best performing strategy.


POST http://devtrad.onrender.com/compare


Content-Type: application/json
{

"market": "BTC/USDT PERP",

"timeframe": "1h",

"strategies": [

{

"strategy": "ema_crossover",

"parameters": {

"short_period": 9,

"long_period": 21

}

},

{

"strategy": "ema_crossover",

"parameters": {

"short_period": 12,

"long_period": 26

}

},

{

"strategy": "rsi_mean_reversion",

"parameters": {

"period": 14,

"oversold": 30,

"overbought": 70

}

}

],

"initial_capital": 10000

}


🌡️ GET /market-regime

Classifies current market condition.

Returns:


📊 POST /risk-analysis

Professional risk metrics:

  • Return volatility

  • Value at Risk (VaR)

  • Max consecutive losses

  • Risk classification (Low / Medium / High)

    POST http://devtrad.onrender.com/risk-analysis
    Content-Type: application/json
    {

    "market": "ETH/USDT PERP",

    "timeframe": "1h",

    "strategy": "rsi_mean_reversion",

    "parameters": {

    "period": 14,

    "oversold": 30,

    "overbought": 70

    },

    "initial_capital": 10000

    }


🧠 Strategy Engine

1️⃣ EMA Crossover Strategy

  • Uses Short EMA & Long EMA

  • Golden Cross → Buy

  • Death Cross → Sell

  • Best for trending markets

2️⃣ RSI Mean Reversion Strategy

  • Uses RSI momentum oscillator

  • Oversold → Buy

  • Overbought → Sell

  • Best for range-bound markets


📊 Standardized Performance Metrics

Each backtest returns:

  • Win Rate

  • Total Return

  • Maximum Drawdown

  • Sharpe Ratio

  • Total Trades

Formulas:

  • Win Rate = Profitable Trades / Total Trades

  • Total Return = (Final − Initial) / Initial

  • Max Drawdown = Largest peak-to-trough decline

  • Sharpe Ratio = Mean Return / Std Dev Return


🏗 Architecture Overview

Injective Mainnet Data
        ↓
Data Layer (injective_client.py)
        ↓
Strategy Engine
        ↓
Metrics Engine
        ↓
FastAPI Routes
        ↓
Structured JSON Output
Team Leader
MMr Suganthan TS
Project Link
Sector
InfraOther